

NASA: Earth Science Overview

Steven Platnick
NASA Goddard Space Flight Center

presented to representatives of Tunisian Ministry of Agriculture & Remote Sensing Center for N. African States

28 May 2013

The Questions ...

- How does the Earth work as a system of interconnecting parts?
- How is the Earth's environment is changing?
- How do humans affect the environment and climate, and what are the future consequences?

The Climate Questions ...

Feedbacks (in order of largest uncertainty): cloud, lapse rate/water vapor, snow/ice albedo

NASA Science Efforts Include ...

Measurements

 instruments on satellites, aircraft/balloons, and the ground

Modeling

- physical processes, climate, weather

Communication

- free and open data access
- scientists, public, stakeholders

International Efforts in Satellite Observations of Climate

- Efforts of all countries are needed to provide needed breadth, resilience, and innovation.
- Space-based perspective provides unequalled vanatage point for observing Earth systems.
- Cooperation among nations, including data sharing calibration/ validation, and assessment, enhances value of all nations' efforts.
- Satellite data can support both long-term climate and near-term operational requirements. Can improve quality of life for all the world's citizens.
- Numerous entities and mechanisms exist that are facilitating this coordination.

NASA Earth Science 2005–2013 Airborne Campaigns

Sun Synchronous Polar Orbits: Aqua MODIS imager true color composite (2330 km swath)

Earth Observations: Then and Now

TIROS (Television and Infra Observation Satellite) S. Atlantic Cyclone July 1961

NASA's International Afternoon Constellation (A-Train): Eyjafjallajokull

NASA's International Afternoon Constellation (A-Train): Tropical storms

TS Debby (24 Aug 2006)
MODIS IR + AIRS H2O + CloudSat radar + CALIOP lidar

Hurricane Bill (19 Aug 2009) MODIS + POLDER + CALIOP lidar

NASA's International Afternoon Constellation (A-Train): Aerosol Indirect Effect (AIE)

NASA's International Afternoon Constellation (A-Train): Aerosol Indirect Effect (AIE)

NASA's International Afternoon Constellation (A-Train): Aerosol Indirect Effect (AIE)

relative change
in precipitation rate
vs. Aerosol Optical Depth
(AOD)

AMSR-E (Aqua satellite) Liquid Water Path (LWP)
CloudSat precip. detection for
Trade Cu clouds

Sorooshian et al. On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett. (2009) vol. 36 (13) pp. 1-5

NASA's International Afternoon Constellation (A-Train): Aerosol Direct Effect

NASA's International Afternoon Constellation (A-Train): Aerosol Direct Effect

NASA GSFC GMAO GEOS-5, 3.5 km, 2 January 2009

Useful Links

NASA LANCE (Land Atmo. Near Real-time Capability for EOS):

MODIS, OMI, AIRS, MLS

earthdata.nasa.gov/data/near-real-time-data

Many of the visualizations and images shown can be found at: svs.gsfc.nasa.gov

&

earthobservatory.nasa.gov